Ir al contenido principal

Entradas

Mostrando entradas de agosto, 2020

¿Cómo resolver ecuaciones diferenciales de primer orden homogéneas? 5

 A petición de una suscriptora, el problema de hoy es resolver la siguiente ecuación diferencial homogénea de primer orden: \[\left[xycos\left(\frac{y}{x}\right)+x^{2}sen\left(\frac{y}{x}\right)\right]y'=y^{2}cos\left(\frac{y}{x}\right)\] Para simplificar el problema podemos dividir toda la expresión por $y^{2}cos\left(\frac{y}{x}\right)$, además de cambiar $y'=\frac{dy}{dx}$: \[\left[\frac{x}{y}+\frac{x^{2}}{y^{2}}cot\left(\frac{y}{x}\right)\right]\frac{dy}{dx}=1\] \[\left[\frac{x}{y}+\frac{x^{2}}{y^{2}}cot\left(\frac{y}{x}\right)\right]dy=dx\] Ahora realizamos el siguiente cambio de variable $y=ux$, y sus correspondientes derivadas $dy=udx+xdu$, luego se cumpliran las siguientes igualdades respecto del cambio de variable $u=\frac{y}{x}$, $\frac{1}{u}=\frac{x}{y}$ que reemplazaremos en nuestra ecuación diferencial para poder distribuir: \[\left[\frac{1}{u}+\frac{1}{u^{2}}cot\left(u\right)\right](udx+xdu)=dx\] \[dx+\frac{x}{u}du+\frac{cot(u)}{u}dx+\frac{x}{u^{2}}cot(u)du=dx\] A

¿Cómo realizar una sustitución para integrar una función en términos de arcoseno? 2

 La integral que queremos solucionar es la siguiente: \[\sqrt{\frac{m}{2E}}\int \frac{dy}{\sqrt{1+\frac{mg}{E}y-\frac{1}{2}\frac{k}{E}y^{2}}}\] La expresión dentro de la raíz cuadrada se puede escribir cómo: \[-\frac{1}{2}\frac{k}{E}y^{2}+\frac{mg}{E}y+1=-\left(\frac{1}{2}\frac{k}{E}y^{2}-\frac{mg}{E}y-1\right)\] \[=-\left[\left(\sqrt{\frac{k}{2E}}y-\frac{mg}{2E}\sqrt{\frac{2E}{k}}\right)^{2}-\left(1+\left(\frac{mg}{E}\right)^{2}\frac{2E}{4k}\right)\right]\] \[=\left(1+\frac{(mg)^{2}}{2Ek}\right)-\left(\sqrt{\frac{k}{2E}}y-\frac{mg}{\sqrt{2Ek}}\right)^{2}\] Luego la integral queda de la forma: \[\sqrt{\frac{m}{2E}}\int \frac{dy}{\sqrt{\left(1+\frac{(mg)^{2}}{2Ek}\right)-\left(\sqrt{\frac{k}{2E}}y-\frac{mg}{\sqrt{2Ek}}\right)^{2}}}\] Factorizamos $\left(1+\frac{(mg)^{2}}{2Ek}\right)$: \[\sqrt{\frac{m}{2E}}\int \frac{dy}{\sqrt{\left(1+\frac{(mg)^{2}}{2Ek}\right)}\sqrt{1-\frac{\left(\sqrt{\frac{k}{2E}}y-\frac{mg}{\sqrt{2Ek}}\right)^{2}}{\left(1+\frac{(mg)^{2}}{2Ek}\right)}}}\] Ahora sí $u

Demostración ecuación diferencial lineal homogénea de segundo orden con Wronskiano

En esta ocasión, vengo a mostrarles la solución del problema 47 de ecuaciones diferenciales de segundo orden homogeneas del libro de  Ecuaciones diferenciales con aplicaciones 2da edición,  del autor  Dennis G. Zill. El problema es el siguiente: Sean $y_{1}$ y $y_{2}$ dos soluciones de: \[a_{2}(x)y''+a_{1}(x)y'+a_{0}y=0\] (a) Sí $W(y_{1},y_{2})$ es el wronskiano de $y_{1}$ y $y_{2}$, demuestre que \[a_{2}(x)\frac{dW}{dx}+a_{1}(x)W=0\] Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación diferencial homogénea de segundo orden, luego también deben ser soluciones de las ecuaciones diferenciales: \[a_{2}(x)y_{1}''+a_{1}(x)y_{1}'+a_{0}y_{1}=0\] \[a_{2}(x)y_{2}''+a_{1}(x)y_{2}'+a_{0}y_{2}=0\] El wronskiano es de la forma: \[W(y_{1},y_{2})=\begin{vmatrix}y_{1} & y_{2}\\y_{1}' & y_{2}'\end{vmatrix}\] \[W(y_{1},y_{2})=y_{1}y_{2}'-y_{2}y_{1}'\] La derivada del Wronskiano es: \[\frac{dW}{dx}=(y_{1}y_{2}')'-(y_{2}y_{1}')'\

¿Cómo son las integrales del tipo arcoseno o arcocoseno?

Del curso de Cálculo Integral aprendemos que las integrales de tipo arcoseno u arcocoseno son de la forma: \[\int \frac{du}{\sqrt{1-u^{2}}}=arcsen(u)\] ó \[\int -\frac{du}{\sqrt{1-u^{2}}}=arccos(u)\] Hasta es posible ver dicha integral de un poco más complicada sin importar que sea positiva (arcoseno) u negativa (arcocoseno): \[\int \pm \frac{f'(u)du}{\sqrt{1-[f(u)]^{2}}}\] Sólo en esos casos podemos conocer algunas integrales que podemos resolver, pero existen otras integrales que con un cambio de variable, u organización de términos especifico, puede darnos en términos de arcoseno u arcocoseno, un ejemplo puede ser el siguiente: \[\int \frac{du}{\sqrt{a^{2}-u^{2}}}\] Acá simplemente dentro de la raíz cuadrada debemos dejarlo de la forma: 1-término al cuadrado para que nos quede fácil de identificar, y así se pueda hacer fácil la integración: \[\int \frac{du}{\sqrt{a^{2}\left(1-\frac{u^{2}}{a^{2}}\right)}}\] El término $a^{2}$, sale de la raíz cuadrada como $a$,  \[\frac{1}{a}\int