Loading [MathJax]/jax/output/HTML-CSS/jax.js
Ir al contenido principal

¿Cómo realizar una sustitución para integrar una función en términos de arcoseno? 2

 La integral que queremos solucionar es la siguiente:

m2Edy1+mgEy12kEy2

La expresión dentro de la raíz cuadrada se puede escribir cómo:

12kEy2+mgEy+1=(12kEy2mgEy1)

=[(k2Eymg2E2Ek)2(1+(mgE)22E4k)]

=(1+(mg)22Ek)(k2Eymg2Ek)2

Luego la integral queda de la forma:

m2Edy(1+(mg)22Ek)(k2Eymg2Ek)2

Factorizamos (1+(mg)22Ek):

m2Edy(1+(mg)22Ek)1(k2Eymg2Ek)2(1+(mg)22Ek)

Ahora sí u2=(k2Eymg2Ek)2(1+(mg)22Ek), luego u=(k2Eymg2Ek)(1+(mg)22Ek) y du=k2Edy(1+(mg)22Ek), o lo que es lo mismo: 2Ekdu=dy(1+(mg)22Ek), así finalmente nuestra integral se reduce a:

mkdu1u2=mkarcsen(u)+C

Deshacemos el cambio de variable y obtenemos la respuesta finalmente (organizando un poco los términos) de nuestra integral:

m2Edy1+mgEy12kEy2=mkarcsen(kymgm2g2+2Ek)



Comentarios

Entradas populares de este blog

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: sen(2x)dx Podemos realizar la siguiente sustitución u=2x, du=2dx, entonces du2=dx, así la integral nos queda de la forma: 12sen(u)du Que corresponde a una integral fundamental: 12sen(u)du=12cos(u)+C Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: 12cos(2x)+C

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: ¨y+ω2y=g Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: ¨y+ω2y=0 Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada x, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de x a y: y(t)=c1cos(ωt)+c2sen(ωt) Para resolver la ecuación diferencial debemos hallar el wronskiano: W(f(t),g(t))=|f(t)g(t)f(t)g(t)| Identificamos las funciones f(t)=c1cos(ωt) y g(t)=c2sen(ωt), hallamos las derivadas f(t)=c1ωsen(ωt) y $g'(t)=c_{...

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento. Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera: Tomamos C como Cuadrado, R como Rectángulo, y T como Triángulo CRTRTCTCR CTRRCTTRC Que corresponden a 6 formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como: 3!=3×2×1=6 Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de 3! formas, y como son 3 tandas de veces que el mono va a sacar cantidades...