Ir al contenido principal

¿Cómo resolver ecuaciones diferenciales de primer orden homogéneas? 5

 A petición de una suscriptora, el problema de hoy es resolver la siguiente ecuación diferencial homogénea de primer orden:

\[\left[xycos\left(\frac{y}{x}\right)+x^{2}sen\left(\frac{y}{x}\right)\right]y'=y^{2}cos\left(\frac{y}{x}\right)\]

Para simplificar el problema podemos dividir toda la expresión por $y^{2}cos\left(\frac{y}{x}\right)$, además de cambiar $y'=\frac{dy}{dx}$:

\[\left[\frac{x}{y}+\frac{x^{2}}{y^{2}}cot\left(\frac{y}{x}\right)\right]\frac{dy}{dx}=1\]

\[\left[\frac{x}{y}+\frac{x^{2}}{y^{2}}cot\left(\frac{y}{x}\right)\right]dy=dx\]

Ahora realizamos el siguiente cambio de variable $y=ux$, y sus correspondientes derivadas $dy=udx+xdu$, luego se cumpliran las siguientes igualdades respecto del cambio de variable $u=\frac{y}{x}$, $\frac{1}{u}=\frac{x}{y}$ que reemplazaremos en nuestra ecuación diferencial para poder distribuir:

\[\left[\frac{1}{u}+\frac{1}{u^{2}}cot\left(u\right)\right](udx+xdu)=dx\]

\[dx+\frac{x}{u}du+\frac{cot(u)}{u}dx+\frac{x}{u^{2}}cot(u)du=dx\]

Agrupando respecto a $xdu$, donde el término $\frac{1}{u}cot(u)dx$ pasa al otro lado de la igualdad, veremos que hay términos que pueden ser cancelados:

\[\left[\frac{1}{u}+\frac{cot(u)}{u^{2}}\right]xdu=-\frac{1}{u}cot(u)dx\]

\[\left[1+\frac{cot(u)}{u}\right]xdu=-cot(u)dx\]

Podemos realizar separación de variables si dividimos toda la expresión por $cot(u)$ y $x$:

\[\left[tan(u)+\frac{1}{u}\right]du=-\frac{dx}{x}\]

Finalmente integramos para obtener la respuesta a nuestro problema:

\[\int \left[tan(u)+\frac{1}{u}\right]du=-\int \frac{dx}{x}\]

La integral de $tan(u)$ (función tangente) ya la hemos encontrado anteriormente en nuestro caso para escribir la respuesta de las integrales:

\[ln[sec(u)]+ln[u]=-ln[x]+C\]

Deshaciendo el cambio de variable encontramos ahora sí la respuesta a nuestra ecuación diferencial homogénea de primer orden:

\[ln\left[sec\left(\frac{y}{x}\right)\right]+ln\left[\frac{y}{x}\right]=-ln[x]+C\]





Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje x, y su ecuación diferencial es la siguiente: \[\ddot{x}+\omega^{2}x=0\] Podemos ver que la ecuación corresponde a una ecuación diferencial homogénea, así que proponemos una solución de la forma $x=e^{mt}$ y hallamos sus derivadas $\dot{x}=me^{mt}$, $\ddot{x}=m^{2}e^{mt}$, reemplazamos en nuestra ecuación diferencial: \[m^{2}e^{mt}+\omega^{2}e^{mt}=0\] Sacando factor común $e^{mt}$: \[e^{mt}(m^{2}+\omega^{2})=0\] Donde $e^{mt}$ no puede ser cero, entonces lo será el termino entre parentesis y hallamos sus respectivas raíces: \[m^{2}+\omega^{2}=0\] Donde las soluciones son imaginarias y corresponden a: \[m_1=i\omega \quad m-2=-i\omega\] La solución queda expresada como: \[x(t)=e^{i\omega t}+e^{-i\omega t}\] Aplicamos la identidad de Euler para simplificar mas elegante esta solución: \[e^{i\theta}=cos\theta+isen\theta\] Nos queda ahora ...