A petición de un suscriptor y seguidor voy a mostrar dos ejercicios para el cálculo del centro de masa con integrales dobles, comencemos: El segundo ejercicio es: 2. Calcular el centro de masa de una lámina representada por la región $R$ que se encuentra por encima del eje $x$ y entre las líneas $y=x$; $y=-x$, $x^{2}+y^{2}=4y$; $x^{2}+y^{2}=6y$; $y>0$; donde la densidad es $\sqrt{x^{2}+y^{2}}$ Primero vamos a representar el área, al cuál vamos a hallar el centro de masa (voy a utilizar Geogebra). Este problema resulta más simple si lo resolvemos mediante coordenadas polares, así que la densidad $\rho(x,y)$ en coordenadas polares de acuerdo a las reglas de transformación $x=rcos\theta$ y $y=rsen\theta$ es: \[\rho(x,y)=\rho(rcos\theta,rsen\theta)=\sqrt{x^{2}+y^{2}}=\sqrt{(rcos\theta)^{2}+(rsen\theta)^{2}}=\sqrt{r^{2}}=r\] Como vimos en el primer ejercicio , las integrales que tiene cada punto del centro de masa se pueden representar en coordenadas polares, escogemos este tipo de coor
Acá encontrarás varios ejercicios resueltos y explicaciones sobre ecuaciones diferenciales y más