Ir al contenido principal

¿Cuál es la integral definida de $\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}sen^{4}\theta d\theta$?

Es nuestro turno de resolver la siguiente integral definida:

\[\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}sen^{4}\theta d\theta\]

De acuerdo a lo visto en la publicación para una integración definida con $sen^{2}\theta$:

\[sen^{2}\theta=\frac{1-cos(2\theta)}{2}\]

Así la función $sen^{4}\theta$ puede representarse como:

\[sen^{4}\theta=(sen^{2})^{2}=\left(\frac{1-cos(2\theta)}{2}\right)^{2}=\frac{3}{8}-\frac{cos(2\theta)}{2}+\frac{cos(4\theta)}{8}\]

Reemplazamos:

\[\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}sen^{4}\theta d\theta=\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}\left(\frac{3}{8}-\frac{cos(2\theta)}{2}+\frac{cos(4\theta)}{8}\right)d\theta\]

Integramos y evaluamos, para darnos la siguiente respuesta:

\[\int_{\frac{\pi}{4}}^{\frac{3\pi}{4}}sen^{4}\theta d\theta=\frac{3\pi+8}{16}\]

Comentarios

Entradas populares de este blog

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

¿Cómo resolver ecuaciones diferenciales con factor integrante? 4

En esta ocasión, vengo a mostrarles la solución del problema 2.i de ecuaciones con factor integrante del libro de  Ecuaciones diferenciales con aplicaciones y notas históricas 2da edición,  del autor  George F. Simmons El problema es el siguiente: Resolver cada una de estas ecuaciones hallando un factor integrante: \[(yln(y)-2xy)dx+(x+y)dy=0\] Este libro nos propone hallar de dos formas los factores integrantes: \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=g(x)\] \[\mu(x)=e^{\int g(x)dx}\] y \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=h(y)\] \[\mu(y)=e^{\int h(y)dy}\] Como ambos factores integrantes tienen el mismo numerador, calculamos las derivadas parciales: \[\frac{\partial M}{\partial y}=\frac{\partial }{\partial y}(yln(y)-2xy)\] \[\frac{\partial M}{\partial y}=ln(y)+1-2x\] \[\frac{\partial N}{\partial x}=\frac{\partial }{\partial x}(x+y)\] \[\frac{\partial N}{\partial x}=1\] Calculamos las funcio...

¿Cómo son las integrales del tipo arcoseno o arcocoseno?

Del curso de Cálculo Integral aprendemos que las integrales de tipo arcoseno u arcocoseno son de la forma: \[\int \frac{du}{\sqrt{1-u^{2}}}=arcsen(u)\] ó \[\int -\frac{du}{\sqrt{1-u^{2}}}=arccos(u)\] Hasta es posible ver dicha integral de un poco más complicada sin importar que sea positiva (arcoseno) u negativa (arcocoseno): \[\int \pm \frac{f'(u)du}{\sqrt{1-[f(u)]^{2}}}\] Sólo en esos casos podemos conocer algunas integrales que podemos resolver, pero existen otras integrales que con un cambio de variable, u organización de términos especifico, puede darnos en términos de arcoseno u arcocoseno, un ejemplo puede ser el siguiente: \[\int \frac{du}{\sqrt{a^{2}-u^{2}}}\] Acá simplemente dentro de la raíz cuadrada debemos dejarlo de la forma: 1-término al cuadrado para que nos quede fácil de identificar, y así se pueda hacer fácil la integración: \[\int \frac{du}{\sqrt{a^{2}\left(1-\frac{u^{2}}{a^{2}}\right)}}\] El término $a^{2}$, sale de la raíz cuadrada como $a$,  \[\frac{1}{a}\int...