Ir al contenido principal

¿Cómo resolver ecuaciones diferenciales con factor integrante? 5

En esta ocasión, vengo a mostrarles la solución del problema 4.a de ecuaciones con factor integrante del libro de Ecuaciones diferenciales con aplicaciones y notas históricas 2da edición, del autor George F. Simmons
El problema es el siguiente:
Resolver las siguientes ecuaciones usando las fórmulas diferenciales:
\[d\left(\frac{x}{y}\right)=\frac{ydx-xdy}{y^{2}}\]
\[d(xy)=xdy+ydx\]
\[d(x^{2}+y^{2})=2(xdx+ydy)\]
\[d\left(arctg\left(\frac{x}{y}\right)\right)=\frac{ydx-xdy}{x^{2}+y^{2}}\]
\[d\left(ln\left(\frac{x}{y}\right)\right)=\frac{ydx-xdy}{xy}\]
Nuestra ecuación diferencial a resolver es:
\[xdy-ydx=(1+y^{2})dy\]
Que podemos distribuir el segundo término y dejar como:
\[xdy-ydx=dy+y^{2}dy\]
Dividiendo por $y^{2}$:
\[\frac{x}{y^{2}}dy-\frac{y}{y^{2}}dx=\frac{1}{y^{2}}dy+dy\]
Dónde los dos primeros términos multiplicados por menos, toman la primera forma de nuestras fórmulas diferenciales:
\[\frac{-(ydx-xdy)}{y^{2}}=\frac{1}{y^{2}}dy+dy\]
\[-d\left(\frac{x}{y}\right)=\frac{1}{y^{2}}dy+dy\]
Integramos y finalmente encontramos la respuesta a nuestra ecuación diferencial:
\[-\int d\left(\frac{x}{y}\right)=\int \frac{1}{y^{2}}dy+\int dy\]
\[-\frac{x}{y}=-\frac{1}{y}+y+C\]

Comentarios

Entradas populares de este blog

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

¿Cómo resolver ecuaciones diferenciales con factor integrante? 4

En esta ocasión, vengo a mostrarles la solución del problema 2.i de ecuaciones con factor integrante del libro de  Ecuaciones diferenciales con aplicaciones y notas históricas 2da edición,  del autor  George F. Simmons El problema es el siguiente: Resolver cada una de estas ecuaciones hallando un factor integrante: \[(yln(y)-2xy)dx+(x+y)dy=0\] Este libro nos propone hallar de dos formas los factores integrantes: \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=g(x)\] \[\mu(x)=e^{\int g(x)dx}\] y \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=h(y)\] \[\mu(y)=e^{\int h(y)dy}\] Como ambos factores integrantes tienen el mismo numerador, calculamos las derivadas parciales: \[\frac{\partial M}{\partial y}=\frac{\partial }{\partial y}(yln(y)-2xy)\] \[\frac{\partial M}{\partial y}=ln(y)+1-2x\] \[\frac{\partial N}{\partial x}=\frac{\partial }{\partial x}(x+y)\] \[\frac{\partial N}{\partial x}=1\] Calculamos las funcio...

¿Cómo son las integrales del tipo arcoseno o arcocoseno?

Del curso de Cálculo Integral aprendemos que las integrales de tipo arcoseno u arcocoseno son de la forma: \[\int \frac{du}{\sqrt{1-u^{2}}}=arcsen(u)\] ó \[\int -\frac{du}{\sqrt{1-u^{2}}}=arccos(u)\] Hasta es posible ver dicha integral de un poco más complicada sin importar que sea positiva (arcoseno) u negativa (arcocoseno): \[\int \pm \frac{f'(u)du}{\sqrt{1-[f(u)]^{2}}}\] Sólo en esos casos podemos conocer algunas integrales que podemos resolver, pero existen otras integrales que con un cambio de variable, u organización de términos especifico, puede darnos en términos de arcoseno u arcocoseno, un ejemplo puede ser el siguiente: \[\int \frac{du}{\sqrt{a^{2}-u^{2}}}\] Acá simplemente dentro de la raíz cuadrada debemos dejarlo de la forma: 1-término al cuadrado para que nos quede fácil de identificar, y así se pueda hacer fácil la integración: \[\int \frac{du}{\sqrt{a^{2}\left(1-\frac{u^{2}}{a^{2}}\right)}}\] El término $a^{2}$, sale de la raíz cuadrada como $a$,  \[\frac{1}{a}\int...