Ir al contenido principal

¿Cómo resolver una ecuación diferencial de Bernoulli? 2

En esta ocasión, vengo a mostrarles la solución del problema 4 de ecuaciones lineales con ecuación de Bernoulli del libro de Ecuaciones diferenciales con aplicaciones 2da edición, del autor Dennis G. Zill.
Nuestra ecuación diferencial a solucionar es una ecuación diferencial de Bernoulli de la forma:
\[x\frac{dy}{dx}-(1+x)y=xy^{2}\]
Dividimos por $x$ y por $y^{2}$:
\[\frac{1}{y^{2}}\frac{dy}{dx}-\frac{(1+x)}{x}\frac{1}{y}=1\]
Vemos que podemos realizar el cambio de variable $w=\frac{1}{y}$, y su respectiva derivada $\frac{dw}{dx}=-\frac{1}{y^{2}}\frac{dy}{dx}$, o $-\frac{dw}{dx}=\frac{1}{y^{2}}\frac{dy}{dx}$ reemplazamos en nuestra ecuación diferencial:
\[-\frac{dw}{dx}-\frac{(1+x)}{x}w=1\]
\[\frac{dw}{dx}+\frac{(1+x)}{x}w=-1\]
Calculamos el factor integrante:
\[\mu(x)=e^{\int P(x)dx}\]
Con $P(x)=\frac{(1+x)}{x}$, que también podemos representar mas fácil como $P(x)=\frac{1}{x}+1$, calculamos el factor integrante:
\[\mu(x)=e^{\int \left(\frac{1}{x}+1\right)dx}=e^{ln(x)+x}=e^{ln (x)}e^{x}=xe^{x}\]
Luego  nuestra ecuación diferencial toma la forma:
\[xe^{x}\frac{dw}{dx}+(1+x)e^{x}w=-xe^{x}\]
Los dos primeros términos se pueden representar como la derivada de un producto:
\[\frac{d}{dx}[(1+x)e^{x}w]=xe^{x}\]
Integramos, el  término de la derecha se integra fácilmente por partes y tenemos el siguiente resultado:
\[(1+x)e^{x}w=e^{x}(x-1)+C\]
Deshacemos el cambio de variable $w=\frac{1}{y}$
\[(1+x)e^{x}\frac{1}{y}=e^{x}(x-1)+C\]
Despejamos $y$ y encontramos finalmente la solución a nuestro problema:
\[y=\frac{1+x}{(x-1)+Ce^{-x}}\]

Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

Demostración ecuación diferencial lineal homogénea de segundo orden con Wronskiano

En esta ocasión, vengo a mostrarles la solución del problema 47 de ecuaciones diferenciales de segundo orden homogeneas del libro de  Ecuaciones diferenciales con aplicaciones 2da edición,  del autor  Dennis G. Zill. El problema es el siguiente: Sean $y_{1}$ y $y_{2}$ dos soluciones de: \[a_{2}(x)y''+a_{1}(x)y'+a_{0}y=0\] (a) Sí $W(y_{1},y_{2})$ es el wronskiano de $y_{1}$ y $y_{2}$, demuestre que \[a_{2}(x)\frac{dW}{dx}+a_{1}(x)W=0\] Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación diferencial homogénea de segundo orden, luego también deben ser soluciones de las ecuaciones diferenciales: \[a_{2}(x)y_{1}''+a_{1}(x)y_{1}'+a_{0}y_{1}=0\] \[a_{2}(x)y_{2}''+a_{1}(x)y_{2}'+a_{0}y_{2}=0\] El wronskiano es de la forma: \[W(y_{1},y_{2})=\begin{vmatrix}y_{1} & y_{2}\\y_{1}' & y_{2}'\end{vmatrix}\] \[W(y_{1},y_{2})=y_{1}y_{2}'-y_{2}y_{1}'\] La derivada del Wronskiano es: \[\frac{dW}{dx}=(y_{1}y_{2}')'-(y_{2}y_{1}')'\...

¿Cómo hallar el centro de masa de una lámina con integrales dobles? 2

 A petición de un suscriptor y seguidor voy a mostrar dos ejercicios para el cálculo del centro de masa con integrales dobles, comencemos: El segundo ejercicio es: 2. Calcular el centro de masa de una lámina representada por la región $R$ que se encuentra por encima del eje $x$ y entre las líneas $y=x$; $y=-x$, $x^{2}+y^{2}=4y$; $x^{2}+y^{2}=6y$; $y>0$; donde la densidad es $\sqrt{x^{2}+y^{2}}$ Primero vamos a representar el área, al cuál vamos a hallar el centro de masa (voy a utilizar Geogebra). Este problema resulta más simple si lo resolvemos mediante coordenadas polares, así que la densidad $\rho(x,y)$ en coordenadas polares de acuerdo a las reglas de transformación $x=rcos\theta$ y $y=rsen\theta$ es: \[\rho(x,y)=\rho(rcos\theta,rsen\theta)=\sqrt{x^{2}+y^{2}}=\sqrt{(rcos\theta)^{2}+(rsen\theta)^{2}}=\sqrt{r^{2}}=r\] Como vimos en el primer ejercicio , las integrales que tiene cada punto del centro de masa se pueden representar en coordenadas polares, escogemos este tipo de ...