Ir al contenido principal

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento.
Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera:
Tomamos $C$ como Cuadrado, $R$ como Rectángulo, y $T$ como Triángulo
\[CRT \quad RTC \quad TCR\]
\[CTR \quad RCT \quad TRC\]
Que corresponden a $6$ formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como:
\[3!=3 \times 2 \times 1 = 6\]
Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de $3!$ formas, y como son 3 tandas de veces que el mono va a sacar cantidades de 3 figuras, entonces tendremos $(3!)^{3}$ donde el exponente representa la cantidad de veces que se sacan las figuras, por ultimo, la cantidad de formas de organizar las nueve figuras viene dado por $9!$, es así como el resultado correspondiente al problema es:
\[\frac{3!\cdot(3!)^{3}}{9!}=\frac{1296}{362880}=\frac{1}{280}\approx 0,003571\]
Luego solo existe una probabilidad entre 280 que el mono logre sacar las figuras en orden, por lo tanto es poco probable que pueda existir un evento de tal magnitud

Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje x, y su ecuación diferencial es la siguiente: \[\ddot{x}+\omega^{2}x=0\] Podemos ver que la ecuación corresponde a una ecuación diferencial homogénea, así que proponemos una solución de la forma $x=e^{mt}$ y hallamos sus derivadas $\dot{x}=me^{mt}$, $\ddot{x}=m^{2}e^{mt}$, reemplazamos en nuestra ecuación diferencial: \[m^{2}e^{mt}+\omega^{2}e^{mt}=0\] Sacando factor común $e^{mt}$: \[e^{mt}(m^{2}+\omega^{2})=0\] Donde $e^{mt}$ no puede ser cero, entonces lo será el termino entre parentesis y hallamos sus respectivas raíces: \[m^{2}+\omega^{2}=0\] Donde las soluciones son imaginarias y corresponden a: \[m_1=i\omega \quad m-2=-i\omega\] La solución queda expresada como: \[x(t)=e^{i\omega t}+e^{-i\omega t}\] Aplicamos la identidad de Euler para simplificar mas elegante esta solución: \[e^{i\theta}=cos\theta+isen\theta\] Nos queda ahora ...