Processing math: 100%
Ir al contenido principal

¿Cómo resolver ecuaciones diferenciales de segundo orden por separación de variables? 1

Nuestra ecuación a resolver es la siguiente:
d2xdt2=0
Integramos respecto al tiempo:
d2xdt2dt=0dt
La respuesta a esta integral es la siguiente:
dxdt=C
Como dxdt corresponde a la velocidad, entonces podemos escribir la ecuación como sigue:
v(t)=C
Proponemos la siguiente condición inicial v(0)=v0, y hallamos el valor de la constante:
v0=C
reemplazando y volviendo a nuestra ecuación diferencial resultante:
dxdt=v0
Volvemos a integrar:
dxdtdt=v0dt
Obtenemos que la variable x va a depender del tiempo:
x(t)=v0t+C
Aplicamos la siguiente condición inicial x(0)=x0, y tenemos el valor de la constante de integración:
x0=C
Finalmente reemplazamos y llegamos a la solución de la ecuación diferencial:
x(t)=v0t+x0

Comentarios

Entradas populares de este blog

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: sen(2x)dx Podemos realizar la siguiente sustitución u=2x, du=2dx, entonces du2=dx, así la integral nos queda de la forma: 12sen(u)du Que corresponde a una integral fundamental: 12sen(u)du=12cos(u)+C Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: 12cos(2x)+C

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: ¨y+ω2y=g Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: ¨y+ω2y=0 Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada x, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de x a y: y(t)=c1cos(ωt)+c2sen(ωt) Para resolver la ecuación diferencial debemos hallar el wronskiano: W(f(t),g(t))=|f(t)g(t)f(t)g(t)| Identificamos las funciones f(t)=c1cos(ωt) y g(t)=c2sen(ωt), hallamos las derivadas f(t)=c1ωsen(ωt) y $g'(t)=c_{...

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento. Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera: Tomamos C como Cuadrado, R como Rectángulo, y T como Triángulo CRTRTCTCR CTRRCTTRC Que corresponden a 6 formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como: 3!=3×2×1=6 Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de 3! formas, y como son 3 tandas de veces que el mono va a sacar cantidades...