Processing math: 100%
Ir al contenido principal

¿Cuál es la integral de arcotangente?

Nuestro problema ahora es hallar la integral a la función arcotangente:
arctan(w)dw

Debemos aplicar integración por partes:
Uniforme de Vaca es para Una Vaca Vestida de Uniforme:
UdV=UVVdU

Acá U=arctan(w), su derivada es: dU=11+w2, y dV=dw, su integral es: V=w, aplicamos de acuerdo a la integración por partes:
arctan(w)dw=warctan(w)w1+w2dw

Para la última integral utilizamos una sustitución, sí p=1+w2, dp=2wdw, entonces dp2=wdw, y la respectiva integral queda como:
12dpp=12ln(p)+C

Deshacemos la sustitución:
12ln(1+w2)+C

Reemplazamos este resultado para obtener el resultado de la integral arcotangente:
arctan(w)dw=warctan(w)12ln(1+w2)+C

Finalmente obteniendo el resultado deseado.

Comentarios

Entradas populares de este blog

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: sen(2x)dx
Podemos realizar la siguiente sustitución u=2x, du=2dx, entonces du2=dx, así la integral nos queda de la forma: 12sen(u)du
Que corresponde a una integral fundamental: 12sen(u)du=12cos(u)+C
Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: 12cos(2x)+C

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: ¨y+ω2y=g
Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: ¨y+ω2y=0
Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada x, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de x a y: y(t)=c1cos(ωt)+c2sen(ωt)
Para resolver la ecuación diferencial debemos hallar el wronskiano: W(f(t),g(t))=|f(t)g(t)f(t)g(t)|
Identificamos las funciones f(t)=c1cos(ωt) y g(t)=c2sen(ωt), hallamos las derivadas f(t)=c1ωsen(ωt) y $g'(t)=c_{...

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento. Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera: Tomamos C como Cuadrado, R como Rectángulo, y T como Triángulo CRTRTCTCR
CTRRCTTRC
Que corresponden a 6 formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como: 3!=3×2×1=6
Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de 3! formas, y como son 3 tandas de veces que el mono va a sacar cantidades...