Ir al contenido principal

¿Cómo resolver una ecuación diferencial de primer orden por el método de separación de variables? 3

En esta ocasión, vengo a mostrarles la solución al ejercicio 35 de separación de variables del libro de Ecuaciones diferenciales con aplicaciones 2da edición, del autor Dennis G. Zill.
La ecuación diferencial a resolver es la siguiente:
\[\frac{dy}{dx}=sen(x)(cos(2y)-cos^{2}(y))\]
Recordamos las identidades de ángulos dobles para el coseno de un mismo ángulo:
\[cos(2y)=cos^{2}(y)-sen^{2}(y)\]
Reemplazamos en nuestra ecuación diferencial:
\[\frac{dy}{dx}=sen(x)(cos^{2}(y)-sen^{2}(y)-cos^{2}(y))\]
\[\frac{dy}{dx}=sen(x)(-sen^{2}(y))\]
Realizamos la separación de variables:
\[-\frac{dy}{sen^{2}(y)}=sen(x)dx\]
Que será lo mismo a:
\[-csec^{2}(y)dy=sen(x)dx\]
Luego integramos nuestras funciones trigonométricas:
\[\int -csec^{2}(y)dy=\int sen(x)dx\]
\[ctan(y)+C_{1}=cos(x)+C_{2}\]
\[ctan(y)=cos(x)+C_{2}-C_{1}\]
\[ctan(y)=cos(x)+K\]
Donde $K=C_{2}-C_{1}$ y recordamos que la derivada de $ctan(y)$ es $-csec^{2}(y)$, luego la integral de la anterior función será la función $ctan(y)$.

Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

¿Cómo resolver ecuaciones diferenciales con factor integrante? 4

En esta ocasión, vengo a mostrarles la solución del problema 2.i de ecuaciones con factor integrante del libro de  Ecuaciones diferenciales con aplicaciones y notas históricas 2da edición,  del autor  George F. Simmons El problema es el siguiente: Resolver cada una de estas ecuaciones hallando un factor integrante: \[(yln(y)-2xy)dx+(x+y)dy=0\] Este libro nos propone hallar de dos formas los factores integrantes: \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N}=g(x)\] \[\mu(x)=e^{\int g(x)dx}\] y \[\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{-M}=h(y)\] \[\mu(y)=e^{\int h(y)dy}\] Como ambos factores integrantes tienen el mismo numerador, calculamos las derivadas parciales: \[\frac{\partial M}{\partial y}=\frac{\partial }{\partial y}(yln(y)-2xy)\] \[\frac{\partial M}{\partial y}=ln(y)+1-2x\] \[\frac{\partial N}{\partial x}=\frac{\partial }{\partial x}(x+y)\] \[\frac{\partial N}{\partial x}=1\] Calculamos las funcio...