Ir al contenido principal

¿Cómo integrar por fracciones parciales? Ejemplo 1

Para esta ocasión vamos a resolver la siguiente integral:
\[\int \frac{1}{1-x^{2}y^{2}}dx\]
Donde $y$ es una constante, esto debido a que estamos integrando respecto a $x$.
Como el denominador es una diferencia de cuadrados podemos escribirlo como sigue:
\[\int \frac{1}{(1-yx)(1+yx)}dx\]
Aplicamos el método de fracciones parciales:
\[\frac{1}{(1-yx)(1+yx)}=\frac{A}{1-yx}+\frac{B}{1+yx}\]
Donde $A$ y $B$ son dos números que tenemos que hallar, realizamos la suma de la derecha y cancelamos términos en ambos lados de la expresión:
\[\frac{1}{(1-yx)(1+yx)}=\frac{A(1+yx)+B(1-yx)}{(1-yx)(1+yx)}\]
\[1=A(1+yx)+B(1-yx)\]
Damos el valor $x=\frac{1}{y}$ para hallar el valor de $A$ y se nos cancela el término en $B$ quedando:
\[1=A(1+y\frac{1}{y})+B(1-y\frac{1}{y})\]
\[1=A(1+1)+B(1-1)\]
\[1=2A+0\]
\[\frac{1}{2}=A\]
Ahora damos el valor $x=-\frac{1}{y}$ para hallar el valor de $B$ y se nos cancela el término en $A$:
\[1=A(1-y\frac{1}{y})+B(1+y\frac{1}{y})\]
\[1=A(1+1)+B(1+1)\]
\[1=0+2B\]
\[\frac{1}{2}=B\]
Por lo tanto la integral que queremos resolver la podemos representar como:
\[\int \frac{1}{1-x^{2}y^{2}}dx=\int \frac{A}{1-yx}dx+\int \frac{B}{1+yx}dx\]
Cambiando los valores de $A$ y $B$, por los respectivos resultados hallados:
\[\int \frac{1}{1-x^{2}y^{2}}dx=\frac{1}{2}\int \frac{1}{1-yx}dx+\frac{1}{2}\int \frac{1}{1+yx}dx\]
A la primera integral de la derecha le hacemos una sustitución $u=1-yx$, $du=-ydx$; entonces $-\frac{du}{y}=dx$ y para la segunda integral de la derecha una sustitución similar $v=1-yx$, $dv=ydx$; entonces $\frac{dv}{y}=dx$, nos quedan las sencillas integrales:
\[-\frac{1}{2y}\int \frac{du}{u}+\frac{1}{2y}\int \frac{dv}{v} \]
\[-\frac{1}{2y}ln(u)+\frac{1}{2y}ln(v)+C \]
Deshacemos el cambio de variable y tenemos nuestro resultado:
\[\int \frac{1}{1-x^{2}y^{2}}dx=-\frac{1}{2y}ln(1-yx)+\frac{1}{2y}ln(1+yx)+C \]

Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

Demostración ecuación diferencial lineal homogénea de segundo orden con Wronskiano

En esta ocasión, vengo a mostrarles la solución del problema 47 de ecuaciones diferenciales de segundo orden homogeneas del libro de  Ecuaciones diferenciales con aplicaciones 2da edición,  del autor  Dennis G. Zill. El problema es el siguiente: Sean $y_{1}$ y $y_{2}$ dos soluciones de: \[a_{2}(x)y''+a_{1}(x)y'+a_{0}y=0\] (a) Sí $W(y_{1},y_{2})$ es el wronskiano de $y_{1}$ y $y_{2}$, demuestre que \[a_{2}(x)\frac{dW}{dx}+a_{1}(x)W=0\] Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación diferencial homogénea de segundo orden, luego también deben ser soluciones de las ecuaciones diferenciales: \[a_{2}(x)y_{1}''+a_{1}(x)y_{1}'+a_{0}y_{1}=0\] \[a_{2}(x)y_{2}''+a_{1}(x)y_{2}'+a_{0}y_{2}=0\] El wronskiano es de la forma: \[W(y_{1},y_{2})=\begin{vmatrix}y_{1} & y_{2}\\y_{1}' & y_{2}'\end{vmatrix}\] \[W(y_{1},y_{2})=y_{1}y_{2}'-y_{2}y_{1}'\] La derivada del Wronskiano es: \[\frac{dW}{dx}=(y_{1}y_{2}')'-(y_{2}y_{1}')'\...