Ir al contenido principal

¿Cómo resolver ecuaciones diferenciales de primer orden homogéneas? 3

En esta ocasión, vengo a mostrarles la solución al ejercicio 40 de ecuaciones homogéneas del libro de Ecuaciones diferenciales con aplicaciones 2da edición, del autor Dennis G. Zill.
La ecuación diferencial a resolver es la siguiente:
\[ydx+x(ln(x)-ln(y)-1)dy=0\]
Con condición inicial $y(1)=e$ (Las condiciones iniciales se utilizan para hallar la constante de integración).
Los términos al lado de los diferenciales tienen grado $0$, por lo tanto es posible resolver la ecuación diferencial mediante el método de las ecuaciones diferenciales homogéneas.
El cambio de variable para la ecuación diferencial es:
\[u=yln(x)\]
Calculamos sus derivadas:
\[du=ln(x)dy+\frac{y}{x}dx\]
Despejamos $\frac{y}{x}dx$:
\[\frac{y}{x}dx=du-ln(x)dy\]
Si dividimos nuestra ecuación diferencial por $x$, nos quedara de la forma:
\[\frac{y}{x}dx+(ln(x)-ln(y)-1)dy=0\]
Cambiamos el valor $\frac{y}{x}dx$ que obtuvimos anteriormente a nuestra ecuación diferencial, quedando ya separadas las variables:
\[du-(ln(y)-1)dy=0\]
\[du=(ln(y)-1)dy\]
Podemos integrar:
\[\int du=\int (ln(y)-1)dy\]
La integral del logaritmo natural es: $y(ln(y)-1)$
\[u+C_{1}=y(ln(y)-1)-y+C_{2}\]
Deshacemos el cambio de variable:
\[yln(x)+C_{1}=y(ln(y)-1)-y+C_{2}\]
\[yln(x)=y(ln(y)-1)-y+C_{2}-C_{1}\]
\[yln(x)=y(ln(y)-1)-y+K\]
Donde $K=C_{2}-C_{1}$, ahora hallamos la constante $K$ mediante la condición inicial propuesta $y(1)=e$, donde el valor de $x=1$ y el valor de $y$ en ese punto es $e$, encontramos el valor $K=e$.
Así la ecuación diferencial queda de la forma:
\[yln(x)=y(ln(y)-1)-y+e\]

Comentarios

Entradas populares de este blog

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento. Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera: Tomamos $C$ como Cuadrado, $R$ como Rectángulo, y $T$ como Triángulo \[CRT \quad RTC \quad TCR\] \[CTR \quad RCT \quad TRC\] Que corresponden a $6$ formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como: \[3!=3 \times 2 \times 1 = 6\] Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de $3!$ formas, y como son 3 tandas de veces que el mono va a sacar cantidades

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{

¿Cómo realizar una sustitución para integrar una función en términos de arcoseno?

La integral que queremos resolver es la siguiente: \[\sqrt{\frac{m}{2E}}\int \frac{dx}{\sqrt{1-\frac{1}{2}\frac{k}{E}x^{2}}}\] Realizamos un cambio de variable de la siguiente forma: \[\frac{k}{2E}x^{2}=y^{2}\] Para poder hallar la derivada sacamos raíz cuadrada a ambos términos: \[\sqrt{\frac{k}{2E}}x=y\] Sacamos las derivadas y obtenemos: \[\sqrt{\frac{k}{2E}}dx=dy\] Luego pasando el factor que multiplica el $dx$ al lado del dy: \[dx=\sqrt{\frac{2E}{k}}dy\] Por tanto la integral queda de la forma: \[\sqrt{\frac{m}{2E}}\sqrt{\frac{2E}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}\] \[\sqrt{\frac{m}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}\] Que corresponde a una integral de arcoseno, por lo tanto la respuesta nos queda como: \[\sqrt{\frac{m}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}=\sqrt{\frac{m}{k}}arcsen(y)+C\] Deshaciendo el cambio de variable, obtenemos finalmente el resultado de nuestra integral: \[\sqrt{\frac{m}{2E}}\int \frac{dx}{\sqrt{1-\frac{1}{2}\frac{k}{E}x^{2}}}=\sqrt{\frac{m}{k}}arcse