Ir al contenido principal

¿Cómo integrar por sustitución? Ejemplo 1

Nuestra integral que vamos a resolver es la siguiente:
\[\int (e^{-x}+e^{-3x})dx\]
Por linealidad de las integrales:
\[\int e^{-x}dx+\int e^{-3x}dx\]
Para la primera integral
\[\int e^{-x}dx\]
Realizamos una sustitución de la siguiente forma $u=-x$, $du=-dx$, $-du=dx$, así la integral toma la forma:
\[-\int e^{u}du\]
Como es una integral fundamental, tenemos el siguiente resultado de la integral:
\[-e^{u}+c_1\]
Deshacemos el cambio de variable para obtener la respuesta a la primera integral:
\[\int e^{-x}dx=-e^{-x}+c_1\]
Para la segunda integral
\[\int e^{-3x}dx\]
Realizamos una sustitución de la siguiente forma $v=-3x$, $dv=-3dx$, $-\frac{dv}{3}=dx$, así la integral toma la forma:
\[-\frac{1}{3}\int e^{v}dv\]
Que también corresponde a una integral fundamenta, integrando:
\[-\frac{1}{3}e^{v}+c_{2}\]
Deshacemos el cambio de variable para obtener la respuesta a la segunda integral:
\[\int e^{-3x}dx=-\frac{1}{3}e^{-3x}+c_{2}\]
Luego la respuesta a toda la integral es:
\[\int (e^{-x}+e^{-3x})dx=-e^{-x}-\frac{1}{3}e^{-3x}+c_1+c_2\]
Realizamos una factorización en la respuesta para que se vea mas elegante:
\[\int (e^{-x}+e^{-3x})dx=-e^{-x}\left(1+\frac{1}{3}e^{-2x}\right)+c\]
Donde $c=c_1+c_2$

Comentarios

Entradas populares de este blog

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{...

¿Cuál es la integral de sen(2x)?

Nuestra integral a resolver está vez es la siguiente: \[\int sen(2x)dx\] Podemos realizar la siguiente sustitución $u=2x$, $du=2dx$, entonces $\frac{du}{2}=dx$, así la integral nos queda de la forma: \[\frac{1}{2}\int sen(u)du\] Que corresponde a una integral fundamental: \[\frac{1}{2}\int sen(u)du=-\frac{1}{2}cos(u)+C\] Deshacemos el cambio de variable y obtenemos la respuesta a nuestra integral: \[-\frac{1}{2}cos(2x)+C\]

Demostración ecuación diferencial lineal homogénea de segundo orden con Wronskiano

En esta ocasión, vengo a mostrarles la solución del problema 47 de ecuaciones diferenciales de segundo orden homogeneas del libro de  Ecuaciones diferenciales con aplicaciones 2da edición,  del autor  Dennis G. Zill. El problema es el siguiente: Sean $y_{1}$ y $y_{2}$ dos soluciones de: \[a_{2}(x)y''+a_{1}(x)y'+a_{0}y=0\] (a) Sí $W(y_{1},y_{2})$ es el wronskiano de $y_{1}$ y $y_{2}$, demuestre que \[a_{2}(x)\frac{dW}{dx}+a_{1}(x)W=0\] Como $y_{1}$ y $y_{2}$ son soluciones de la ecuación diferencial homogénea de segundo orden, luego también deben ser soluciones de las ecuaciones diferenciales: \[a_{2}(x)y_{1}''+a_{1}(x)y_{1}'+a_{0}y_{1}=0\] \[a_{2}(x)y_{2}''+a_{1}(x)y_{2}'+a_{0}y_{2}=0\] El wronskiano es de la forma: \[W(y_{1},y_{2})=\begin{vmatrix}y_{1} & y_{2}\\y_{1}' & y_{2}'\end{vmatrix}\] \[W(y_{1},y_{2})=y_{1}y_{2}'-y_{2}y_{1}'\] La derivada del Wronskiano es: \[\frac{dW}{dx}=(y_{1}y_{2}')'-(y_{2}y_{1}')'\...