Tenemos la ecuación diferencial no homogénea:
\[y''+9y=sec(x)\]
Primero hallamos la solución complementaria $y_{c}$, que se obtiene de resolver la ecuación diferencial homogénea:
\[y''+9y=0\]
Proponemos una solución de la forma $y=e^{mx}$ y sus derivadas $y'=me^{mx}$, $y''=m^{2}e^{mx}$, reemplazamos en nuestra ecuación diferencial:
\[m^{2}e^{mx}+9e^{mx}=0\]
Factorizamos $e^{mx}$ y como este ultimo no puede ser cero, la ecuación cuadrática a resolver para determinar $m$ es de la forma:
\[e^{mx}(m^{2}+9)=0\]
\[m^{2}+9=0\]
Las soluciones a esa ecuación cuadrática son de la forma:
\[m_1=i3 \quad m_2=-i3\]
La solución particular es de la forma:
\[y_c=C_1e^{i3x}+C_2e^{-i3x}\]
Aplicamos la identidad de Euler y obtenemos:
\[y_c=c_1cos(3x)+c_2sen(3x)\]
Para hallar la solución particular $y_p$ utilizamos el método de variación de parámetros, que emplea el Wronskiano:
\[W(f(x),g(x))=\begin{vmatrix}f(x) & g(x)\\f'(x) & g'(x)\end{vmatrix}\]
Identificamos las funciones $f(x)=cos(3x)$ y $g(x)=sen(3x)$, hallamos las derivadas $f'(x)=-3sen(3x)$ y $g'(x)=3cos(3x)$, reemplazamos en nuestro Wronskiano:
\[W(cos(3x),sen(3x))=\begin{vmatrix}cos(3x) & sen(3x)\\-3sen(3x) & 3cos(3x)\end{vmatrix}\]
Si el determinante es diferente de cero, luego las soluciones son linealmente independientes:
\[W(cos(3x),sen(3x))=\begin{vmatrix}cos(3x) & sen(3x)\\ -3sen(3x) & 3cos(3x)\end{vmatrix}\]
\[=(cos(3x))(3cos(3x))-(sen(3x))(-3sen(3x))\]
\[=3cos^{2}(x)+3sen^{2}(x)=3(cos^{2}(3x)+sen^{2}(3x))\]
\[=3\]
Luego el determinante nos da diferente de cero.
La variación de parámetros nos dice que para hallar la solución $y_p$ debemos integrar los términos:
\[u'_1=-\frac{y_2h(x)}{W} \quad u'_2=-\frac{y_1h(x)}{W}\]
Donde $y_1=cos(3x)$ y $y_2=sen(3x)$ y $h(x)=sec(x)$ (El término que hace no homogénea a nuestra ecuación diferencial $y''+9y=sec(x)$ y $W$ es el resultado del determinante (Wronskiano)
Calculamos $u'_1$ y $u'_2$ :
\[u'_1=-\frac{sen(3x)sec(x)}{3} \quad u'_2=\frac{cos(3x)sec(x)}{3}\]
Integramos cada una de las $u_n$ anteriores respecto a $x$, para eso vamos a tener la forma:
\[u'_1=-\frac{sen(3x)}{3cos(x)} \quad u'_2=\frac{cos(3x)}{3cos(x)}\]
Integramos:
\[u_1=\int -\frac{sen(3x)}{3cos(x)}dx \quad u_2=\int \frac{cos(3x)}{3cos(x)}dx\]
Y obtenemos las soluciones de las integrales:
\[u_1=-\frac{1}{3}ln(|cos(x)|) -\frac{2}{3}cos^{2}(x)\]
\[u_2=-\frac{1}{3}sen(2x)-\frac{1}{3}x\]
La solución particular es de la forma:
\[y_p=u_1y_1+u_2y_2\]
\[y_p=\left(-\frac{1}{3}ln(|cos(x)|) -\frac{2}{3}cos^{2}(x)\right)cos(3x)+\left(-\frac{1}{3}sen(2x)-\frac{1}{3}x\right)sen(3x)\]
\[y_p=-\left(\frac{1}{3}ln(|cos(x)|) cos(3x)+\frac{2}{3}cos^{2}(x)cos(3x)+\frac{1}{3}sen(2x)sen(3x)+\frac{1}{3}xsen(3x)\right)\]
Y la solución de la ecuación diferencial no homogénea es:
\[y=y_c+y_p\]
\[y=c_1cos(3x)+c_2sen(3x)-\left(\frac{1}{3}ln(|cos(x)|) cos(3x)+\frac{2}{3}cos^{2}(x)cos(3x)+\frac{1}{3}sen(2x)sen(3x)+\frac{1}{3}xsen(3x)\right)\]
\[y''+9y=sec(x)\]
Primero hallamos la solución complementaria $y_{c}$, que se obtiene de resolver la ecuación diferencial homogénea:
\[y''+9y=0\]
Proponemos una solución de la forma $y=e^{mx}$ y sus derivadas $y'=me^{mx}$, $y''=m^{2}e^{mx}$, reemplazamos en nuestra ecuación diferencial:
\[m^{2}e^{mx}+9e^{mx}=0\]
Factorizamos $e^{mx}$ y como este ultimo no puede ser cero, la ecuación cuadrática a resolver para determinar $m$ es de la forma:
\[e^{mx}(m^{2}+9)=0\]
\[m^{2}+9=0\]
Las soluciones a esa ecuación cuadrática son de la forma:
\[m_1=i3 \quad m_2=-i3\]
La solución particular es de la forma:
\[y_c=C_1e^{i3x}+C_2e^{-i3x}\]
Aplicamos la identidad de Euler y obtenemos:
\[y_c=c_1cos(3x)+c_2sen(3x)\]
Para hallar la solución particular $y_p$ utilizamos el método de variación de parámetros, que emplea el Wronskiano:
\[W(f(x),g(x))=\begin{vmatrix}f(x) & g(x)\\f'(x) & g'(x)\end{vmatrix}\]
Identificamos las funciones $f(x)=cos(3x)$ y $g(x)=sen(3x)$, hallamos las derivadas $f'(x)=-3sen(3x)$ y $g'(x)=3cos(3x)$, reemplazamos en nuestro Wronskiano:
\[W(cos(3x),sen(3x))=\begin{vmatrix}cos(3x) & sen(3x)\\-3sen(3x) & 3cos(3x)\end{vmatrix}\]
Si el determinante es diferente de cero, luego las soluciones son linealmente independientes:
\[W(cos(3x),sen(3x))=\begin{vmatrix}cos(3x) & sen(3x)\\ -3sen(3x) & 3cos(3x)\end{vmatrix}\]
\[=(cos(3x))(3cos(3x))-(sen(3x))(-3sen(3x))\]
\[=3cos^{2}(x)+3sen^{2}(x)=3(cos^{2}(3x)+sen^{2}(3x))\]
\[=3\]
Luego el determinante nos da diferente de cero.
La variación de parámetros nos dice que para hallar la solución $y_p$ debemos integrar los términos:
\[u'_1=-\frac{y_2h(x)}{W} \quad u'_2=-\frac{y_1h(x)}{W}\]
Donde $y_1=cos(3x)$ y $y_2=sen(3x)$ y $h(x)=sec(x)$ (El término que hace no homogénea a nuestra ecuación diferencial $y''+9y=sec(x)$ y $W$ es el resultado del determinante (Wronskiano)
Calculamos $u'_1$ y $u'_2$ :
\[u'_1=-\frac{sen(3x)sec(x)}{3} \quad u'_2=\frac{cos(3x)sec(x)}{3}\]
Integramos cada una de las $u_n$ anteriores respecto a $x$, para eso vamos a tener la forma:
\[u'_1=-\frac{sen(3x)}{3cos(x)} \quad u'_2=\frac{cos(3x)}{3cos(x)}\]
Integramos:
\[u_1=\int -\frac{sen(3x)}{3cos(x)}dx \quad u_2=\int \frac{cos(3x)}{3cos(x)}dx\]
Y obtenemos las soluciones de las integrales:
\[u_1=-\frac{1}{3}ln(|cos(x)|) -\frac{2}{3}cos^{2}(x)\]
\[u_2=-\frac{1}{3}sen(2x)-\frac{1}{3}x\]
La solución particular es de la forma:
\[y_p=u_1y_1+u_2y_2\]
\[y_p=\left(-\frac{1}{3}ln(|cos(x)|) -\frac{2}{3}cos^{2}(x)\right)cos(3x)+\left(-\frac{1}{3}sen(2x)-\frac{1}{3}x\right)sen(3x)\]
\[y_p=-\left(\frac{1}{3}ln(|cos(x)|) cos(3x)+\frac{2}{3}cos^{2}(x)cos(3x)+\frac{1}{3}sen(2x)sen(3x)+\frac{1}{3}xsen(3x)\right)\]
Y la solución de la ecuación diferencial no homogénea es:
\[y=y_c+y_p\]
\[y=c_1cos(3x)+c_2sen(3x)-\left(\frac{1}{3}ln(|cos(x)|) cos(3x)+\frac{2}{3}cos^{2}(x)cos(3x)+\frac{1}{3}sen(2x)sen(3x)+\frac{1}{3}xsen(3x)\right)\]
Comentarios
Publicar un comentario