Ir al contenido principal

¿Cómo resolver una ecuación diferencial de tercer orden por el método de Cauchy-Euler? 1

Nuestra ecuación diferencial a resolver es la siguiente:
\[\frac{2}{7}x^{3}y'''+\frac{8}{7}x^{2}y''-\frac{4}{7}y=0\]
El método de Cauchy-Euler nos pide proponer una solución de la forma:
\[y=x^{m}\]
Donde $m$ es el parámetro que tenemos que encontrar, así que hallamos las derivadas correspondientes y tenemos:
\[y'=mx^{m-1} \quad y''=m(m-1)x^{m-2} \quad y'''=m(m-1)(m-2)x^{m-3}\]
Reemplazamos en la ecuación diferencial que vamos a resolver y tenemos:
\[\frac{2}{7}x^{3}m(m-1)(m-2)x^{m-3}+\frac{8}{7}x^{2}m(m-1)x^{m-2} -\frac{4}{7}x^{m}=0\]
Organizamos términos:
\[\frac{2}{7}x^{3}x^{m-3}m(m-1)(m-2)+\frac{8}{7}x^{2}x^{m-2}m(m-1) -\frac{4}{7}x^{m}=0\]
\[\frac{2}{7}x^{m}m(m-1)(m-2)+\frac{8}{7}x^{m}m(m-1) -\frac{4}{7}x^{m}=0\]
Factorizamos $x^{m}$ y tenemos:
\[x^{m}\left(\frac{2}{7}m(m-1)(m-2)+\frac{8}{7}m(m-1) -\frac{4}{7}\right)=0\]
Como $x^{m}$ no puede ser cero, lo será el término entre paréntesis:
\[\frac{2}{7}m(m-1)(m-2)+\frac{8}{7}m(m-1) -\frac{4}{7}=0\]
Realizamos las respectivas operaciones, agrupando los términos de acuerdo a los exponentes:
\[\frac{2}{7}m^{3}+\frac{2}{7}m^{2}-\frac{4}{7}m-\frac{4}{7}=0\]
Multiplicamos toda la ecuación por siete y la dividimos por 2 y nos queda la siguiente ecuación cúbica:
\[m^{3}+m^{2}-2m-2=0\]
Utilizamos división sintética para reducir de orden la ecuación, y hallar finalmente las raíces de la ecuación cúbica que corresponden con los valores de $m$.
\[m_{1}=-1\quad m_{2}=\sqrt{2}\quad m_{3}=-\sqrt{2}\]
Que corresponden a los exponentes de nuestra solución inicial propuesta $y=x^{m}$
Luego la solución de la ecuación diferencial es:
\[y=c_{1}x^{-1}+c_{2}x^{\sqrt{2}}+c_{3}x^{-\sqrt{2}}\]

Comentarios

Publicar un comentario

Entradas populares de este blog

Problema de probabilidad 1

A un mono se le dan 9 bloques: 3 en forma de cuadrados ,3 como rectángulos y 3 como triángulos. si saca tres de cada clase en orden, es decir, tres triángulos, luego la misma cantidad de cuadrados y así sucesivamente. ¿ sospecharía usted que el mono asoció figuras que tengan forma idéntica?. calcule la probabilidad de este evento. Como tenemos 3 figuras, debemos tener en cuenta todas las posibles formas de organizarlas, Luego una forma de representar este orden es de la siguiente manera: Tomamos $C$ como Cuadrado, $R$ como Rectángulo, y $T$ como Triángulo \[CRT \quad RTC \quad TCR\] \[CTR \quad RCT \quad TRC\] Que corresponden a $6$ formas de organizar las tres figuras, este procedimiento se puede representar fácilmente con la operación factorial, para nuestro caso queda definido como: \[3!=3 \times 2 \times 1 = 6\] Luego por cada vez que el mono saca tres bloques, estos vendrán organizados de $3!$ formas, y como son 3 tandas de veces que el mono va a sacar cantidades

¿Cómo resolver la ecuación diferencial de un oscilador armónico simple con gravedad?

En este caso vamos a solucionar la ecuación diferencial para un oscilador armónico unidimensional que solo tiene el movimiento en el eje y, y además está en presencia de la gravedad, su ecuación diferencial es la siguiente: \[\ddot{y}+\omega^{2}y=g\] Esta es una ecuación diferencial no homogénea y la vamos a resolver por el método de variación de parámetros. Para este método necesitamos resolver la ecuación diferencial homogenea: \[\ddot{y}+\omega^{2}y=0\] Que ya la hemos resuelto en este enlace  aunque resuelta con la coordenada $x$, pero eso no va a importar, porque va a ser la misma solución, solo que cambiamos de $x$ a $y$: \[y(t)=c_{1}cos(\omega t)+c_{2}sen(\omega t)\] Para resolver la ecuación diferencial debemos hallar el wronskiano: \[W(f(t),g(t))=\begin{vmatrix}f(t) & g(t)\\f'(t) & g'(t)\end{vmatrix}\] Identificamos las funciones $f(t)=c_{1}cos(\omega t)$ y $g(t)=c_{2}sen(\omega t)$, hallamos las derivadas $f'(t)=-c_{1}\omega sen(\omega t)$ y $g'(t)=c_{

¿Cómo realizar una sustitución para integrar una función en términos de arcoseno?

La integral que queremos resolver es la siguiente: \[\sqrt{\frac{m}{2E}}\int \frac{dx}{\sqrt{1-\frac{1}{2}\frac{k}{E}x^{2}}}\] Realizamos un cambio de variable de la siguiente forma: \[\frac{k}{2E}x^{2}=y^{2}\] Para poder hallar la derivada sacamos raíz cuadrada a ambos términos: \[\sqrt{\frac{k}{2E}}x=y\] Sacamos las derivadas y obtenemos: \[\sqrt{\frac{k}{2E}}dx=dy\] Luego pasando el factor que multiplica el $dx$ al lado del dy: \[dx=\sqrt{\frac{2E}{k}}dy\] Por tanto la integral queda de la forma: \[\sqrt{\frac{m}{2E}}\sqrt{\frac{2E}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}\] \[\sqrt{\frac{m}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}\] Que corresponde a una integral de arcoseno, por lo tanto la respuesta nos queda como: \[\sqrt{\frac{m}{k}}\int\frac{dy}{\sqrt{1-y^{2}}}=\sqrt{\frac{m}{k}}arcsen(y)+C\] Deshaciendo el cambio de variable, obtenemos finalmente el resultado de nuestra integral: \[\sqrt{\frac{m}{2E}}\int \frac{dx}{\sqrt{1-\frac{1}{2}\frac{k}{E}x^{2}}}=\sqrt{\frac{m}{k}}arcse